In U137/237 series weight indicators, there are two slow synchronous outputs with a common clock on J1.
J1:14 D2 Binary value, setpoints, unstable weight. 74HC11 level, inverted.
J1:15 D1 BCD value for LED.
74HC11 level.
J1:01 Ground
J1:02 OVD
D3 If Cs02:+2. LCD data (see next page). 74HC11 level, inverted.
J1:03 +5V
J1:16 CK Common clock.
74HC11 level, inverted.
Protocols for D1, D2 or D3. 56 bits are sent out every measurement cycle. Bit 1 is last. Each bit takes approximately $100 \mu \mathrm{~s}$. Transmission time is min. 5.6 msec for 56 bits. The time may be prolonged 1 ms due to interrupt!
Clock pulse is going positive during $45 \mu \mathrm{sec}$. The data may be read on any of the edges of the clock pulse.

Bit D1, function.
1 Digit 1:1 LS
Digit 1:2
Digit 1:4
4 Digit 1:8
5 Digit 2:1
6 Digit 2:2
7 Digit 2:4
8 Digit 2:8
9 Digit 3:1
10 Digit 3:2
Digit 3:4
Digit 3:8
Digit 4:1
Digit 4:2
Digit 4:4
Digit 4:8
Digit 5:1
Digit 5:2
Digit 5:4
Digit 5:8 MS
Zero Z $=" 0 "$
="0"
$=" 0 "$
= " 0 "
Net/Gross G
$=" 0 "$
Unstable (Motion) M
Neg. Polarity NP
="1"
OverRange OR
Decimal point 1
Decimal point 2
Decimal point 3
Decimal point 4 (left)
$={ }^{\circ} 0$ "
= "0"
$=" 0$ "
= "0"
$=$ "0"
= "0"

33
34
35
36
37
38
39
40
41
42

43

 44 45 46 47 48 49 50 51 52 53 54 55 56D2, function.
Setpoint 2
Setpoint 1
3
4
4
5
6
6
7
\qquad
\square8
99
10101112131414
15

7 Binary Digit 1 LS
Binary Digit 2
Binary Digit 3
Binary Digit 4
Binary Digit 5
Binary Digit 6
Binary Digit 7
Binary Digit 8
Binary Digit 9
Binary Digit 10
Binary Digit 11
Binary Digit 12
Binary Digit 13
Binary Digit 14
Binary Digit 15
Binary Digit 16 MS
33
34
\qquad
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
51 Overrange
52 Weight between setpoints. Setpoint $1<$ setpoint 2.
53 Unstable weight
54 Outside zero range
55 Setpoint 1
56 Setpoint 2
www.unisystem.se

56 bit data for D3 are found below.
The slow synchronous outputs may normally be extended 100 m from the indicator without trouble.

There is also a fast synchronous output for the display. It is not advisable to use it more than one meter from the indicator. The data are available on J5.

J5:3 Display data. 1 TTL level from 68HC11 port. DISP D Also available on J30.
$\mathrm{J} 5: 4$ Display clock. 1 TTL level from 68 HC 11 port.
DISP CK Also available on J31.
J5:5 Display chip enable. 1 TTL level from 68 HC 11 port.
DISP CE
Also available on J32.
It is a combined output for LCD (56 bits) and scanned LED display (16 bits).
The timing is complex. The LED data are every 2.5 ms . The clock frequency $1 \mu \mathrm{~s}$ and total sending time $22 \mu \mathrm{~s}$.
The LCD data is slower with total sending time about 1.4 ms .
The LCD is updated about 250μ s after a LED update.
The LCD chip enable signal is preceded some 10μ s by a short pulse, which disables the LED.

Protocol for the old LCD: 7 segments ($\mathrm{a}-\mathrm{g}$). 6 digits, 1 is least significant. $\mathrm{Dp}=$ decimal point.

Bit Function	Bit	Function	Bit	Function	Bit	Function	Bit	Function
1 "0"	11	Digit 1 f	21	Digit 2 d	31	Digit 3 b	41	Dp 4
2 "0"	12	Digit 1 e	22	Digit 2 c	32	Digit 3 a	42	Digit 5 g
3 "0"	13	Digit 1 d	23	Digit 2 b	33	Dp 3	43	Digit 5 f
GAL	14	Digit 1 c	24	Digit 2 a	34	Digit 4 g	44	Digit 5 e
5 ¢	15	Digit 1 b	25	Dp 2	35	Digit 4 f	45	Digit 5 d
6 LIT	16	Digit 1 a	26	Digit 3 g	36	Digit 4 e	46	Digit 5 c
7	17	Dp 1	27	Digit 3 f	37	Digit 4 d	47	Digit 5 b
8 \$	18	Digit 2 g	28	Digit 3 e	38	Digit 4 c	48	Digit 5 a
9	19	Digit 2 f	29	Digit 3 d	39	Digit 4 b	49	Dp 5
10 Digit 1 g	20	Digit 2 e	30	Digit 3 c	40	Digit 4 a	50	Digit 6 g

Bit Function
51 Digit 6 f
52 Digit 6 e
53 Digit 6 d
54 Digit 6 c
55 Digit 6 b
56 Digit 6 a

16 mm old LCD display for U237 series.

Protocol for the new LCD: 7 segments ($\mathrm{a}-\mathrm{g}$). $6^{1 ⁄ 2}$ digits, 1 is least significant. $\mathrm{Dp}=$ decimal point.

Bit Function	Bit Function	Bit Function	Bit Function	Bit	Function	Bit Function
1 "0"	11 Digit 1 g	21 Digit 2 e	31 Digit 3 a	41	Digit 5 c	51 Digit 6 g
2 "0"	12 Dp 1	22 Digit 2 d	32 Digit 3 f	42	Digit 6 b	52 - (Minus)
3 "0"	13 Digit 1 e	23 Digit 2 a	33 Digit 4 c	43	Digit 5 g	53 Digit 7
4 Digit 1 c	14 Digit 1 d	24 Digit 2 f	34 Digit 5 b	44	Digit 6 c	54 Digit 6 e
5 S6	15 Digit 1 a	25 Digit 3 c	35 Digit 4 g	45	Digit 5 e	55 Digit 6 a
6 Digit 1 b	16 Digit 1 f	26 Digit 4 b	36 Dp 4	46	Digit 5 d	56 Digit 6 f
7 S3	17 Digit 2 c	27 Digit 3 g	37 Digit 4 e	47	Digit 5 a	
8 S4	18 Digit 3 b	28 Dp 3	38 Digit 4 d	48	Digit 5 f	
9 S1	19 Digit 2 g	29 Digit 3 e	39 Digit 4 a	49	Digit 6 d	
10 Digit 2 b	20 Dp 2	30 Digit 3 d	40 Digit 4 f	50	S2	

16 mm new LCD display for U237 series.

These displays have backlight.
Board connector.
1 OVD
$2+5 \mathrm{~V}, \max 3 \mathrm{~mA}$
3 DISP D
4 DISP CK
5 DISP CE
7 Backlight -V
8 Backlight +V. Typical 80 mA at 5 V .

Synchronous outputs in U137/237 series weight indicators.
Protocol for the scanned LED display.
Bit
1
2 Digit 5 Most significant
3 Digit 4
4 Digit 3
5 Digit 2
6 Digit 1
7 Sign and indicators
8 Buzzer.
9 Segment a ZERO
10 Segment b NET
11 Segment c COUNT
12 Segment d MOTION (unstable)
13 Segment e Opt. indicator 1
14 Segment f Opt. indicator 2
15 Segment g Minus
16 Decimal point

Optional displays.

More information of optional remote displays is found in B01680.

Optional interface boards.

U1278 Parallel BCD output board.
U2390 Isolated DA board with 0-20mA, 4-20mA or 0-5V output.
U1375 Setpoint unit with 2 relays.
U1730 Isolated setpoint unit with 2 semiconductor DC relays and hold.
U2384 Universal output board with 4 semiconductor DC relays.
All except U1278 and U1375 may be mounted inside the indicator, one in U137 series and two in U237 series. U1624 is a metal box, in which the boards may be mounted, when used outside the indicator.

U1278 Parallel BCD output board.

Isolated BCD board with sign, motion (unstable), net and overrange on 28 open collector outputs (ULN2004).
There are also output for data valid, input for output disable and suppression diodes for inductive loads.
This board is connected to synchronous output type 1.
Max ratings of the open collector outputs are $\mathrm{V}_{\mathrm{CE}} \max .50 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}$ max. 250 mA .
Dimensions $99 \times 90 \times 23 \mathrm{~mm}$.
1 corresponds to low (conducting) output in ULN 2004.
D5 is the most significant digit.
Output NEG, negative sign $=0$.
Output M, motion (unstable) $=0$.
Output OR, overrange $=0$.
Output NET, net $=0$.
Output TS from suppression diodes for inductive loads.
Output DATV for data valid. Output for data valid has the CMOS level of the external 5 to 15 V .
Input OUTE.The outputs are enabled by strapping the input OUTE to 0 . In this way more outputs may be connected in parallel and one selected.

The board is optoisolated, and must be fed with an external 5 VDC (max 10 mA) to 15 VDC ($\max 35 \mathrm{~mA}$).

Interface to indicator, 5 pin wafer.
1 SYNC D1 input $30 V$
5 Ground
$2+5 \mathrm{~V}$
4 SYNC CK input

34 p flat cable connector			
Pin 1	D1:1	Pin 18	D1:2
2	D1:4	19	D1:8
3	D2:1	20	D2:2
4	D2:4	21	D2:8
5	D3:1	22	D3:2
6	D3:4	23	D3:8
7	D4:1	24	D4:2
8	D4:4	25	D4:8
9	D5:1	26	D5:2
10	D5:4	27	D5:8
11		28	
12		29	
13	NET	30	M
14	NEG	31	OR
15	TS	32	OUTE
16	OV	33	$+5-15 V$
17	DATV	34	Ground

U2390 Isolated DA board with $\mathbf{0 - 2 0 m A}, 4-20 \mathrm{~mA}$ or $\mathbf{0 - 5 V}$ output.

The board must be fed with an external isolated supply, $16-35 \mathrm{~V}$, min 30 mA .
Output set (JP2;JP3): (OFF;ON) 0-5V. (OFF;OFF) 0-20mA. (ON;ON) 4-20mA. (ON;OFF) 4-24mA. Max 9V. No output at negative weight.
Resolution: 16 bits or 1 part in 65,536 or $15 \mathrm{ppm} . \mathrm{ppm}=$ parts per million. Monotonicity 1 bit.
Max error: 0.15%. Max offset at 0 or 4 mA : 0.05%.
Linearity: Better than $\pm 0.012 \%$ or ± 120 ppm, typical $\pm 20 \mathrm{ppm}$.
Temperature drift: $\mathrm{Max} \pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, typical $\pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
Dimensions: $66 \times 82 \mathrm{~mm}$. May be mounted inside the indicator.

J1	2x8p socket.	J2	15p D-sub male		
1	Ground	1	+ Current out	13	External $16-35$ VDC
3	+5VD	2	$0-5 V$ out	14	OV power
14	SYNC D2	3	$0 V$ signal	15	Ground
16	SYNC CL	4	Ground		

U1375 Setpoint unit with 2 relays.

This is a small, $89 \times 90 \mathrm{~mm}$, low price board with 2 relays for the setpoints in the type 2 synchronous output. It may not be mounted inside the indicator. Shielded cables must be used.
With the optional case U1624, $104 \times 100 \times 36 \mathrm{~mm}$, the board may be used outside the indicator.

J1	5p wafer.	J2	15p D-sub male				
1	Ground	1	Setpoint 2 Common	6	Setpoint 1 NC	11	Optional out
2	SYNC CL	2	Setpoint 2 NO	7	Optional common	12	Optional out
3	SYNC D2	3	Setpoint 2 NC	8	Optional NO	13	+5V out
4	OV	4	Setpoint 1 Common	9	Optional NC	14	OV
5	$+5 V$	5	Setpoint 1 NO	10	Optional out	15	Ground

J2 15p D-sub male

NO means open and NC closed to common, when the weight is below the setpoint.
For older indicators with 6803 processor, Setpoint 1 and 2 are interchanged.
Relay specification: Max current: 3 A . Voltage: $10 \mu \mathrm{~V}$ to 250 V . AC line voltage not recommended because of high disturbance level and negative influence on life. Up to 24 VDC is recommended. Isolation resistance: $10^{11} \mathrm{ohm}$.
Operational life: $1 \mathrm{~W}>10^{8}, 3 \mathrm{~W}>10^{7}, 30 \mathrm{~W}>10^{6}, 50 \mathrm{~W}>10^{4}$ switching operations.

U1730 Isolated setpoint unit with 2 semiconductor DC relays and hold.

This is a small, $81 \times 65 \mathrm{~mm}$, low price board with 2 semiconductor output relays for the setpoints in the type 2 synchronous output. There is also a common holding input for both outputs. The board can be mounted inside U237 series indicator. Shielded cables must be used.

J1	2x8p socket.	J2	15p D-sub male				
1	Ground	1	Setpoint 2 + Max 60V	6		11	Hold -
2	OV	2	Setpoint 2 - Max 1.5A	7	Optional +	12	
3	$+5 V$	3		8	Optional -	13	+5 V out
14	SYNC D2	4	Setpoint $1+$ Max 60 V	9		14	OV
16	SYNC CL	5	Setpoint 1-Max 1.5A	10	Hold +5-30V, 10kohm	15	Ground

U2384 Universal output board with 4 semiconductor DC relays.
This board may be used to receive any 4 consecutive data on D1 or D2 by a variable shift register. In order to get There are 4 outputs with isolated semiconductor DC relays (max 60 V and $\max 1.6 \mathrm{~A}$) and 4 TTL level outputs. The board can be mounted inside U237 series indicator. Shielded cables must be used.

J1	2x8p socket.
1	Ground
2	$0 V$
3	$+5 V$
14	SYNC D2
16	SYNC CL

J2 15p D-sub male
Ground 1 Output $1+$ Max 60 V
OV 2 Output 1 - Max 1.5A
3 Output $2+$ Max 60V
6 Output 3 - Max 1.5A
11 Output 7 TTL
$+5 \mathrm{~V}$
4 Output 2-Max 1.5A
8 Output 4 - Max 1.5A
12 Output 8 TTL
SYNC D2
5 Output 3 + Max 60V
10 O
$13+5 \mathrm{~V}$ out
14 OVD
15 Ground
The 2 first bits ($1 \& 2$) of the protocol are not available and the third bit is received on output 1 by setting all switches on S 1 on. $\mathrm{S} 1: 1$ off represents 1 bit delay, $\mathrm{S} 1: 2$ off 2 bits delay and so on to $\mathrm{S} 1: 6$ off 32 bits delay.
E.g. If bit 52 is wanted on output 1 (53,54 and 55 on outputs 2,3 and 4), the delay $52-2=50$ must be set with S1, which means S1:6, S1:5, and S1:2 off $(32+16+2=50)$.

U1731 RS232, synchronous outputs, optoisolated Tare and Print/Test input. 25p D-sub male.

J1:	RS232, synchronous outputs, optoisolated Tare and Print/Test input. 25p D-sub male. Option U1731.	
1	GND Ground/shield.	
2	TD	Transmit Data.
3	RD	Receive Data.
5	CTS	Clear To Send input.
7	OVD Digital zero.	Note! This interface is not isolated from the indicator zero.
11	+5V	Max recommended load 25mA.
12	SYNC CK	Synchronous output, clock signal. HCMOS level.
13	SYNC D1	Synchronous output, type 1. For displays. HCMOS level.
14	SYNC D2	Synchronous output, type 2. For setpoints, analog output etc. HCMOS level.
16	TARE	Optoisolated input for Print/Test. 12-30V.
19	PRINT/TEST	Optoisolated input for Tare. 12-30V.
20	DTR	Data Terminal Ready output.

Setpoints.

By pushing \{ZERO\} and \{TARE\} simultaneously is possible to enter 2 setpoints (Must be an even number). First setpoint 1 is displayed and after \{ZERO\} setpoint 2, which is indicated by COUNT PCS on. Keyboard functions:

$\{$ ZERO $\}$	Shifts between setpoints.
$\{N E T / G R O S S\}$	Selects the digit position. In sign position, the NET indicator blinks.
$\{$ COUNT $\}$	Increments the digit value and changes sign at setpoints.
$\{P R I N T / T E S T\}$	Prints the sequence and leaves it.
$\{F\}\{F\}$	Leaves the sequence.

